第五章 真核生物的基因連鎖與 定基因圖

大綱

- 一. 基因連鎖
- 二. 染色體互換
- 三. 定染色體圖
- 四. 麵包黴與四分體分析
- 五. 有絲分裂互換

一. 基因連鎖

- A. 連鎖基因 (Linked genes)
- 例如:果蠅一個細胞內有5000個以上的基因,但卻只有8條染色體,故基因連鎖的機會相當大。
- B. 連鎖群 (Linkage group)
- 一條染色體上所有的基因組成一個連鎖群
- C. 連鎖群基因的分配不符合獨立分配率
- 『減數分裂時,一個連鎖群內,所有的基因一起進入同一子 細胞中,而不是依照孟德爾的獨立分配率。』

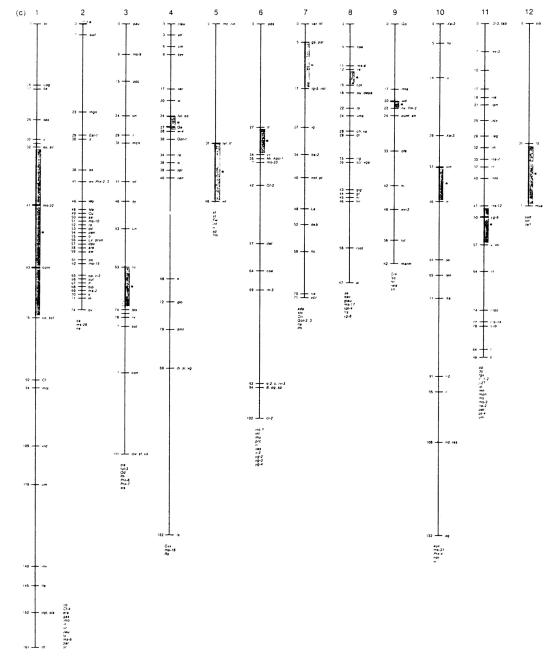


圖 5-1 蕃茄基因組(genome)內有 12 個連鎖群(linkage group)

蕃茄染色體 2 N=24,共 12 對染色體,每一條染色體上有很多基因,灰色部份代表異染色質,其內基因不表現。(源自 Suzuki 等,1989)

二.染色體互換-1

A. 定義:

減數分裂時,非姐妹染色分體間遺傳物質互換

 $s^+sb^+b : s^+sbb : ssb^+b : ssbb=1:1:1:1:1 \circ$

B. 發現歷史:1911年Morgan, 提出連鎖、互換、定染色體圖。 1933年得到諾貝爾獎。

```
觀察果蠅的兩種性狀:
  翅的長短:s+長翅、s 短翅。
  身體顏色:b+灰身、b 黑身。
  P1 長翅灰身 (s+s+b+b+) × 短翅黑身 (ssbb)
  F1
                                  原因:
            長翅灰身 (s+sb+b)
                                  s+b+在同一條染色體上
  以 F1 做試交 (test cross) (與隱性親代交配)
                                  sb 在同一條染色體上
  F1 長翅灰身 (s+sb+b) × 短翅黑身 (ssbb)
      長翅灰身 短翅黑身 長翅黑身 短翅灰身
  F2
      (s^+sb^+b): (ssbb): (s^+sbb): (ssb^+b)
  比例 41% : 41% : 9% : 9%
為何會有這種奇怪的比例?
依照孟德爾的遺傳,s+sb+b 與 ssbb 交配應該會產牛四種外表型:
```

二.染色體互換-II

互換重組的特色:

- 1.沒有任何互換的子代稱為親代型, 反之為重組型
- 2.產生重組型的機率遠比親代型低
- 3.由重組型所佔的比例,可以推估染色體互換的頻率。
- 4.兩個野生型在同一條染色體、兩個突變型在另一條,稱之"順式構型"
- 5.反之一條染色體上有野生型又有突變型稱之"反式構型"。

圖 5-2 互換可能生在染色分體 1 & 3、1 & 4、2 & 3、或 2 & 4 間。 染色體 A 或 B 各稱為一個單價體 (I) , 染色體 A、B 配對形成一個二價體 (II) 。

C:專有名詞

1.姐妹染色分體:1&2,3&4 互稱為姐妹染色分體

2.非姐妹染色分體:1&3,2&4,1&4,2&3 稱之

3.二價體:染色體A,B配對形成"二價體"

4.單價體:染色體A或B單獨存在稱之。

D. 染色體互換的特性

- 1. 非姐妹染色體遺傳物質的互換
- 2. 互換是發生在減數分裂, 同源染色體配對時, 產生交叉

的現象

前期I: 細絲期→偶絲期(同源染色體配對)→粗絲期→雙絲期→肥厚期(基因互換發生在偶絲與粗絲之間)

- 1. 互换的位置不一定, 可能一處, 也可能多處。
- 2. 兩基因的距離愈遠,產生互換的機率愈大。
- 3. 互換的結果產生"重組型"的子代。

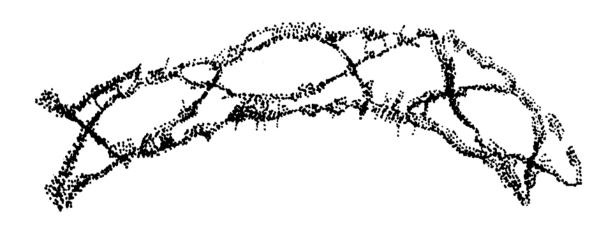


圖 5-3 一個雙絲期細胞 (diplotene) 在兩條配對的同源染色體間出現 五個交叉 (chiasmata) ○

三. 定染色體圖

- A. 何謂基因座 (gene locus / loci) 基因座是指基因在染色體上的位置。 例如基因A在染色體上的位置叫locus A
- B. 兩基因之間任何一處都有可能發生互換兩基因的距離愈遠, 互換的機率愈大。
- C. 基因間距離的單位
- Morgan的學生A.H Sturtevant提出『基因之間的距離』可以用『子代重組型的機率』來代表。以map unit來表示 1 map unit = 1%的重組 = 1 分摩 (cM, centi-morgan)

D. 三點交配 (Three point cross)

利用三對基因雜種(trihybrid)做試交(test cross),例如以 ABC/abc 與 abc/abc 交配,分析三個基因座(loci)上對偶基因(allelic gene)分離的情形,以決定三基因排列的順序。這是決定基因順序(mapping)一個很好的方法。

- 1). 假設以 ABC/abc 與 abc/abc 交配:
 - 1. 親代 I. ABC/abc 會產生幾種配子?
 - a. 無互換產生:

A				В				C					
=	=	=	=	=	=	=	=	=	=	=	:	:	:
	2	l				1	0					C	

產生的配子:ABC、abc

- b. 一次互換 (single crossing over)
 - (1) AB 之間發生互換

產生的重組型配子:Abc、aBC

(2) BC 之間發生互換

產生的重組型配子:ABc、abC

c. 兩次互換 (double crossing over)

產生的重組型配子:AbC、aBc

產生8種配子,其中親代型:ABC, abc 佔的比例最高,

一次互換型:Abc、aBC、ABc、abC、佔其次。

兩次互換型:AbC、aBc 佔的比例最低。

2. 親代 II. abc/abc 產生的配子? 只有一種:abc

3. 以上兩親代交配產生子代的基因型與比例?

親代型:ABC/abc、abc/abc 佔的比例最多。

一次互換型:Abc/abc、aBC/abc、ABc/abc、abC/abc 佔其次。

兩次互換型:AbC/abc、aBc/abc 佔的比例最低。

以上所討論的是當二基因排列順序是 A-B-C 的情況。

假設三基因排列順序未知,我們可由三點交配(three point cross)產生的後代數目,推出三基因的順序

例 1 果蠅親代 I. 是三對基因雜種(trihybrid)ABC/abc, 親代 II 是同型隱性結合子 abc/abc。

A:紅眼,B:灰身,C:長翅

a:白眼,b:黑身,c:短翅

二者交配產生的後代數目如下表,請問 ABC 三基因在染色體 上的排列順序及基因之間的距離?

(*基因型 ABC/abc 只表示 A、B、C 三基因在同一條染色體上,並未表示三基因的排列順序)

子代外表型	數量
1.紅眼、灰身、長翅	370
2. 白眼、黑身、短翅	385
3.紅眼、黑身、短翅	45
4. 白眼、灰身、長翅	50
5.紅眼、灰身、短翅	0 A 2
6. 白眼、黑身、長翅	3
7.紅眼、黑身、長翅	75
8. 白眼、灰身、短翅	70

題解: 1.親代 II 產生的配子只有 abc 一種,故子代的外表型 全由親代 I 的配子決定,我們由子代外表型可推知子代基因型:

子代外表型	數量	
1.紅眼、灰身、長翅	370	
2. 白眼、黑身、短翅	385	
3.紅眼、黑身、短翅	45	
4. 白眼、灰身、長翅	50	
5.紅眼、灰身、短翅	O A 2	
6. 白眼、黑身、長翅	3	
7.紅眼、黑身、長翅	75	
8. 白眼、灰身、短翅	70	

題解: 1. 親代 II 產生的配子只有 abc 一種,故子代的外表型 全由親代 I 的配子决定,我們由子代外表型可推知子代基因 型:

	子代基因型	數量	
	1. ABC/abc	370	
	2. abc/abc	385	
	3. Abc/abc	45	
	4. aBC/abc	50	
	5. ABc/abc	2	
L	6. abC/abc	3	
Ī	7. AbC/abc	75	
	8. aBc/abc	70	

依照數量多寡,可以斷定:

子代1、2數目最多為親代型。

子代3、4、7、8數目其次,為一次互換型

子代5、6數目最少,為二次互換型。

根據子代基因型,我們可以推測基因排列順序:

a). 假設基因排列順序:A-B-C

親代型

A B C

經兩次互換

a b c

產牛的重組型配子有 AbC、aBc;再與 abc/abc 交配產生的 子代基因型:

AbC/abc \ aBc/abc

與表中二次互換型 5 & 6 的基因型不符合,表示此假設錯誤。

b). 假設基因排列順序: A-C-B

親代型

A C B

 $\overline{\mathbf{x}}$ 經兩次互換

產生的重組型配子有 AcB、aCb; 再與 acb/acb 交配產生的 子代基因型:

AcB/acb aCb/acb

與表中二次互換型 5 & 6 的基因型相符合,表示假設正確,為 了確定假設正確,再檢查一次互換。

親代型

A C B

———— 經一次互換

a c b

產生的重組型配子是 Acb、aCB;再與 acb/acb 交配產生的子代基因型:

Acb/acb、aCB/acb 與一次互換型 3 & 4 相符,表示基因排列順序確實是 A-C-B。

3). 為了便於計算基因間的距離,可將子代基因型,以 C 基因為中央, 改寫如下:

子代基因型	數目
1. ACB/acb	370
2. acb/acb	385
3. Acb/acb	45
4. aCB/acb	50
5. AcB/acb	2
6. aCb/acb	3
7. ACb/acb	75
8. acB/acb	70
	1,000

基因順序為 A-C-B,接著要決定基因之間的距離:

- 1 map unit=1%重組型 (recombinant)
- a. 要推 A-C 間的距離,必須求出重組型%,即必須求出 $Ac \times aC$ 型佔全部的比例。

A-C 間的重組型%= (45+50+2+3)/1000=10% 故 A-C 相距 10 map unit

b. 同理 C-B 間的距離,必須先求 Cb、cB 型佔全部的比例: C-B 間的重組型%= (2+3+75+70) /1000=15% 故 C-B 相距 15map unit

A	10	Ç	15	I

4). 重組型 (recombinant) 的產生代表曾發生互換 (crossing over) 。

A-C 產生互換的機率: 0.1 C-B 產生互換的機率: 0.15

理論上,兩次互換的機率: 0.1 × 0.15=0.015

但由此例中,兩次互換的實際機率是: (2+3)/1000=0.005 實際值比理論值小很多,這是因為染色體內有**干擾現象(chromosome interference)**。

4). 重組型 (recombinant) 的產生代表曾發生互換 (crossing over) 。

A-C 產生互換的機率: 0.1 C-B 產生互換的機率: 0.15

理論上,兩次互換的機率: 0.1 × 0.15=0.015

但由此例中,兩次互換的實際機率是: (2+3)/1000=0.005 實際值比理論值小很多,這是因為染色體內有干擾現象(chromosome interference)。

E. 千擾 (interference)

1916 年, H. J. Muller 發現在染色體上某處發生互換,會影響鄰近地區再發生互換的機會。

F. 偶合係數 (coefficient of coincidence, c.o.c.)

coefficienct of coincidence — 兩次互換的實際% 兩次互換的理論%

偶合係數可代表干擾(interference)的程度

 無干擾時 兩次互換的實際 %=兩次互換的理論 % 偶合係數=1

2. 正干擾

當偶合係數<1,表示一處發生互換會「降低」另一處發生互換 的機會,稱為正干擾(positive interference)。

3. 負干擾

當偶合係數>1,表示一處發生互換會「增加」另一處發生互換的機會,稱為負干擾(negative interference)。 本例子中,偶合係數=0.005/0.015=0.33<1。

* 干擾 (interference, I) = 1 - 偶合係數 在完全干擾情況下,完全無兩次互換出現,c.o.c.=0,I=1。通 常 I 是介於 O 與 1 之間。

特殊情況下,二次互換的實際%>理論%,造成負干擾,此現 象在微生物或噬菌體中常見。

一般而言,一條染色體上接近中心節或染色體尖端的部份產生 干擾(interference)的機會最大。

* 干擾的出現有何特殊意義?

干擾使得互換發生的部位能分散在染色體中,不會集中在某一 處。這樣能讓每一條染色體都有互換的機會,即使是最小的染 色體也有互換產生。

* 每一條染色體都有互換的機會,有何特殊意義? 因爲互換可以產生重組型的子代(除親代型之外),增加子代 基因型的種類,增加生物適應環境的機會。

練習5-1

異型結合灰身長翅F1果蝿(s+sb+b)與黑身捲翅(ssbb)的果蝿交配,子代如下:

灰身長翅:23

灰身捲翅:127

黑身長翅:124

黑身捲翅:26

Q1:請問這兩性狀是否為連鎖?

Q2:若是, 互換的機率為何?

解答5-1

A1: 是連鎖 (否則F2應為1:1:1:1)

A2: (23+26) / (23+26+127+124) = 16.3%

練習5-2

雄果蠅 (PpQqRr) 與母果蠅 (ppqqrr) 交配,子代如下:

子代基因型	數量
PQR/pqr	71
pqr/pqr	62
pqR/pqr	27
PQr/pqr	36
pQR/pqr	4
Pqr/pqr	3
pQr/pqr	405
PqR/pqr	392
	1,000

- 請問親代雄果蠅的基因型?
- 請問三基因的排列順序及基因間的距離? 2).
- 3). 實際二次互換的機率?
- 請算出偶合係數(coefficient of coincidence)?
- 若 p, q, r 三基因不是連鎖, 而是分別在三條染色體上, 請問此二 親代交配,產生的子代基因型有幾種?外表型有幾種?

練習5-2:解答

) 看数量最多的 par 与 paR (405 与 392)

若是 par 两次有待各 paR ,与表格中数量最少的不舒, paR ,与表格数量最少的不舒, paR , 与表格数量最少的不舒, pra 两次互换给各 pra , 与表格数量最少的相舒、 pra pra a

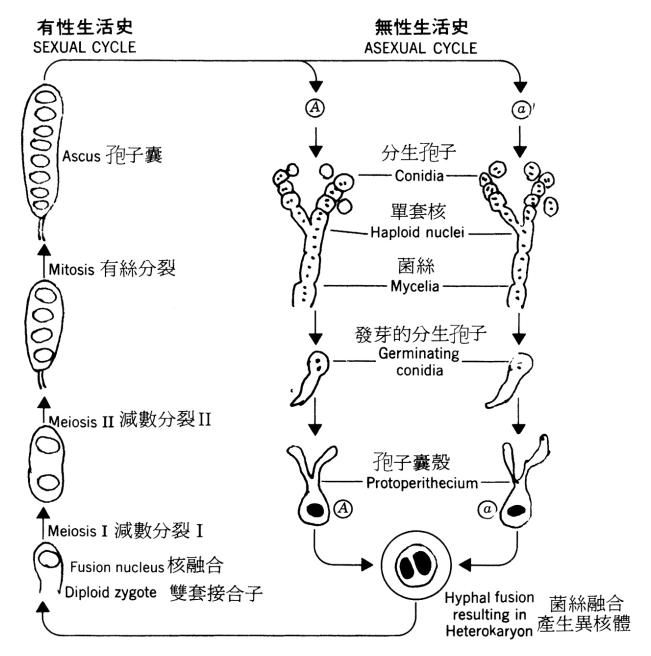
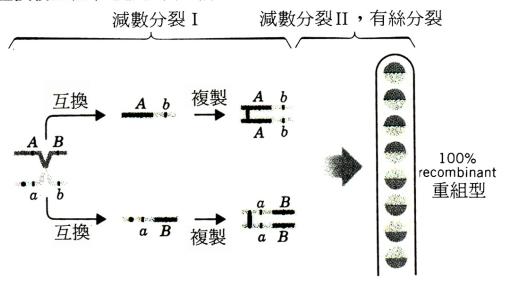
pr主間, 市民政生 pR或Pr (27+36+4+3)/1000 = 0.07 : P2 r r B 之間, 古中我生 RA或rg (71+62+4+3)/1000 = 0.14 : r14 Q

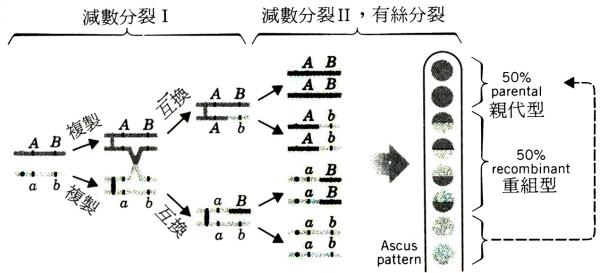
- 3) 实肾两次多段即表格中(4+3)/1000=0.007
- 4) (届的多数= 实)等年编 = 0.007 = 0.714
- 与) POR, PAR, PAR, PAR, Par, PBR, Par, PBR, Par 天8年、刘表型市有8年。

■練習5-2:解答,第5題

親代	子代1	子代2	基因型種類	外表型種類
Pp*pp	Pp	pp	2	2
Qq*qq	Qq	qq	2	2
Rr*rr	Rr	rr	2	2

故基因型有2*2*2=8種 外表型有2*2*2=8種


圖 5-4 紅麵包黴 (Neurospora crassa)的有性與無性生殖。 (依 Gardner, 1991)

(a) 若互換發生在染色體複製之前

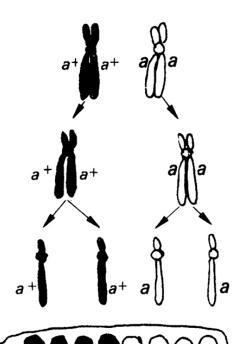

(b) 若互換發生在染色體複製之後

圖 5-5 麵包黴孢子囊內可能產生的 spore

- (a) 若染色體複製前,發生互換,產生的 spore 100% 為重組型。
- (b) 若染色體複製之後,才發生互換,產生的 spore 50%為親代型,50% 為重組型(依 Gardner, 1991)

第一次分裂分離, 基因座 a 與中心節 無互換

4:4

4:4

若基因座與中心節間無互 換發生,產生的8個孢子,其 排列順序是:

 $a a a a a^{+}a^{+}a^{+}a^{+}$

這稱為第一次分離 (FDS)

若基因座與中心節間發生互換,產生的8個孢子,可能有4種排列

a + a + a + a + a a + a + a + a a + a a +

第二次分裂分離, 基因座 a 與中心節 間發生互換

稱之:第二次分離 (SDS)

假設基因座a與中心節的SDS佔 40%, 則基因座a與中心節的距離 為1/2(40%) = 20 mu (map unit)

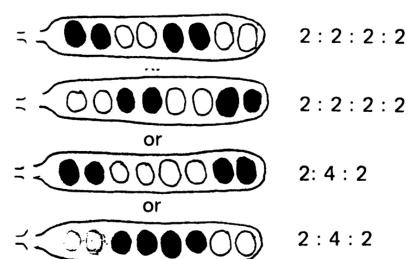


表 5-1 二基因雜種麵包黴 ab/a + b + 減數分裂產生的七種孢子囊型

孢 子 囊							
孢子	1	2	3	4	5	6	7
1	ab	ab+	ab	ab	ab	ab+	ab
2	ab	ab^+	ab	ab	ab	ab^+	ab
3	ab	ab^+	ab+	a+b	a^+b^+	a+b	a^+b^+
4	ab	ab^+	ab+	a+b	a^+b^+	a+b	a^+b^+
5	a^+b^+	a^+b	a^+b^+	a^+b^+	a^+b^+	a+b	a^+b
6	a^+b^+	a^+b	a+b+	a^+b^+	a^+b^+	a^+b	a^+b
7	a^+b^+	a+b	a+b	ab+	ab	ab^+	ab^+
8	a^+b^+	a+b	a ⁺ b	ab^+	ab	ab^+	ab^+
	729	2	101	9	150	1	8
基因座:	a 的 SDS)		9	150	1	8
基因座1	b 的 SDS	,	101	ļ-	150	1	8

a與中心節距離: ½ (9+150+1+8) / 1000 = 8.4 mu b與中心節距離: ½ (101+150+1+8) / 1000 = 13.0 mu

表 5-1 二基因雜種麵包黴 ab/a + b + 減數分裂產生的七種孢子囊型

孢子	1	2	3	4	5	6	7
1	ab	ab+	ab	ab	ab	ab+	ab
2	ab	ab^+	ab	ab	ab	ab^+	ab
3	ab	ab^+	ab+	a+b	a^+b^+	a+b	a^+b^+
4	ab	ab+	ab^+	a+b	a^+b^+	a+b	a^+b^+
5	a^+b^+	a^+b	a^+b^+	a^+b^+	a^+b^+	a+b	a^+b
6	a^+b^+	a+b	a^+b^+	a^+b^+	a^+b^+	a^+b	a^+b
7	a^+b^+	a+b	a+b	ab+	ab	ab^+	ab+
8	a^+b^+	a^+b	a+b	ab^+	ab	ab+	ab+
	729	2	101	9	150	1	8
基因座;	a的 SDS	3		9	150	1	8
基因座1	b的 SDS	3	101		150	1	8

a --- 8.4 ---中心 ----13.0 -----b 或是

-----中心---8.4---a-----13.0-----b (應該是這個, 因為除了孢子1之外, 都是互換型的, 表示互換的機率相當高, 所以a-b之間的距離應該不遠)

以上是以麵包黴作為例子, 可以算出基因與中心節的距離。

若以酵母菌而言, 孢子囊為圓形, 是以PD, NPD, TT來代表

PD:親代型

NPD: 非親代型

TT:四異型

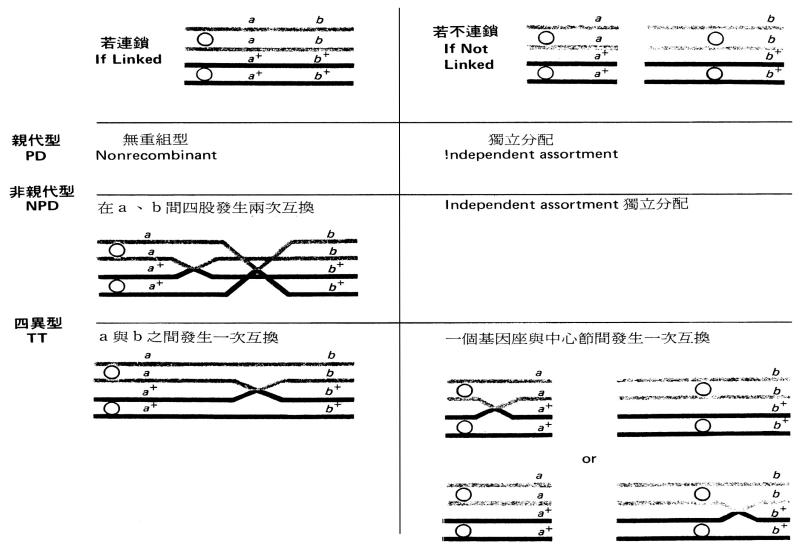


圖 5-7 酵母菌二基因連鎖或非連鎖情況下,經減數分裂產生的親代型 (PD)。非親代型 (NPD)與四異型 (TT)。 (依 stickberger, 1985)

PD=NPD(非連鎖), PD>NPD(連鎖)

表 5-2 酵母菌二基因雜種 a+ab+b 經減數分裂產生的三種孢子囊型

l (PD)	2 (NPD)	3 (TT)	
ab	ab^+	ab	
ab	ab^+	ab^+	
a^+b^+	a^+b	a^+b	
a^+b^+	a+b	a^+b^+	
75	5	20	

- 1. PD>NPD, 故為連鎖基因
- 2. a.b之間的距離:

[(1/2)TT+NPD] / 全部的孢子囊 = [(1/2)20+5]/(75+5+20) =15% = 15 mu

練習5-3

- 3. 兩種類似麵包黴的黴菌,假設一種是野生型(al+)會製造氨基酸 alanine,一種是突變型(al),不會製造 alanine。兩者交配,產生的 孢子囊,取出每一個孢子囊內的孢子,檢查其基因型,500 個孢子囊中,400 為 al+al+al+al al al al 其餘為 al+al+al al al al al +al+al al al al 平al +al al al al +al+al al al al +al+al al al al +al+al al al -x基因座 al 與中心節間的距離?
- 4. 同上題,假設基因ly+代表能製造氨基酸lysine, ly表突變種。將 ly+與 ly 交配,所有的孢子均為 ly+ly+ly ly ly+ly+ly ly,求基因座 ly 與中心節間的距離?

解答5-3

1. 這400/500個即為FDS (第一次分離), 故SDS為 500-400=100 (100/500=20%)

故al與中心節間的距離 = $\frac{1}{2}$ SDS = $\frac{1}{2}$ (20%) = 10% = 10mu

2. 這種孢子全為SDS (100%), 故 ly與中心節 = ½ (100%) = 50% = 50mu